BackPack 2
Solution
A = [2, 3, 5, 7] S = 11 V = [1, 5, 2, 4]
背包怎么装,使背包总共的价值最多.(最大价值)
dp[i][j] = dp[i-1][j] or dp[i-1][j-A[i]] + V[i];
1) 要不等于不选这个i时的价值。 2) 如果要选这个i的价值,看看 j - A[i] 是否大于0, 是的话再和dp[i-1][j-A[i]] + V[i]比较
Code
Code
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
if(A.size() == 0)
{
return 0;
}
int n = A.size();
vector<vector<int>> dp;
for(int i = 0; i<n+1; i++)
{
vector<int> tmp(m+1, 0);
dp.push_back(tmp);
}
int ret = 0;
for(int i = 1; i<n+1; i++)
{
for(int j = 1; j < m+1; j++)
{
dp[i][j] = dp[i-1][j];
if(j >= A[i-1])
{
dp[i][j] = max(dp[i][j], dp[i-1][j-A[i-1]] + V[i-1]);
}
ret = max(ret, dp[i][j]);
}
}
return ret;
}